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RESUMEN

Éste trabajo está centrado al estudio de un modelo autoregresivo que describe el
comportamiento de la volatilidad de ciertas series de tiempo con una componente
adicional: la tendencia. Los modelos GARCH o modelo de heterocedasticidad
condicional autoregresiva generalizada, utilizan los términos σ2 y ε2 como esti-
madores. En los modelos GARCH con tendencia, añadimos la variable temporal
y además, evaluaremos hipótesis con respecto al comportamiento de estos mode-
los.

Nos centraremos en hallar, lo que hemos llamado, punto de cambio y éste se calcu-
lará con ayuda de la prueba del cociente de máxima verosimilitud logarı́tmica. Éste
punto de cambio será aquel que nos arroje un valor máximo en la valuación del co-
ciente, basándonos en dos hipótesis; H0: la serie se puede describir por medio de
coeficientes fijos, contra H1: existe un punto que separa la serie en dos y ajusta el
modelo en un ”antes” y un ”después”, que son descritos por coeficientes únicos en
estos dos tiempos.

Tomaremos además, las series de tiempo asociadas a los precios del petróleo, WTI,
las tasas de cambio de los principales paı́ses exportadores a nivel mundial y uno
importador y, adicional, los ı́ndices de los mercados representativos del mundo,
que para nuestro caso, será el ı́ndice S&P 500 de Estados Unidos, el ı́ndice de la
bolsa mexicana de valores, MEXBOL o MXX y por último, el A300 de China.
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ABSTRACT

This work is focused on the study of an autoregressive model that describes the
behavior of the volatility of certain time series with an additional component:
the trend. The GARCH models or generalized autoregressive conditional het-
eroscedasticity model, use the terms σ2 and ε2 as estimators. In the GARCH mod-
els with a trend, we add the temporal variable and also evaluate hypotheses re-
garding the behavior of these models.

We will focus on determining what we have called a change point and this will
be calculated through the test of the maximum logarithmic likelihood ratio. This
change point will be the point that gives us a maximum value in the coefficient
valuation, based on two hypotheses; H0: the series can be described with fixed co-
efficients, against H1: there is a point(the change point) that split the series values
and fit the model in two times; where each time is described with unique coeffi-
cients for each time.

We will also take the time series associated with oil prices, WTI, the exchange rates
of the main exporting countries worldwide and one importing country, and in
addition, the indices of the most representative markets in the world, which for
our case, will be the S&P 500 index of the United States, the index of the Mexican
stock exchange, MEXBOL or MXX and finally, the A300 index of China.





CHAPTER 1
PRELIMINARY

1.1 TIME SERIES

In this chapter, it will be shown some basic concepts about time series analysis and
modelling.

When we talk about time series we refer to data that is recorded or collected at
regular time intervals; could be daily, weekly or annual, it can vary depending
on how often it is taken. They are used to study relationships between various
variables that change over time and influence each other. From the probabilistic
point of view a time series is a sequence of random variables indexed according to
an increasing time parameter.

We can represent a time series as follows:

X = {Xt : t ∈ T}

where T is the index set.

1.1.1 TREND

The trend of a time series is given by the long-term general movement of the series.
The long-term trend of many business series (industrial and commercial), such as
sales, exports, and production, often approaches a straight line. This trend line
shows that something is increasing or decreasing at a constant rate and we say
that it has a linear trend. The method used to obtain the best-fit straight line is the
Least Squares Method.

On the other hand, when the time series presents a curvilinear behavior, this be-
havior is said to be nonlinear. Among the nonlinear trends that can occur in a
series are, the polynomial, logarithmic, exponential, potential or any other, and
the methods to find the best fit for those behaviors can vary.

We next introduce some basic concepts and notations.
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Definition 1.1 The returns of a time series are the differences xj − xj−1 for j ∈ T
and we represent this differences with εt.

Definition 1.2 The volatility (usually denoted by σ) of a time series is the degree
of variation of a time series, usually measured by the standard deviation of loga-
rithmic returns; i.e. the returns calculated over the logarithmic values of the series.

1.2 AR, ARMA AND ARCH MODELS

There are some assumptions we can establish about particular time series and their
behaviour. We’re not going further on the statistic analysis at this part.

An AR(p) model (Autoregressive) is a representation of the behaviour of a time
series. Here, the output variable depends linearly on its own previous values, at
most, the previous p values. The model is defined as:

Xt = c +
p

∑
i=1

ϕiXt−i + εt

where c is a constant value, ϕ1, . . . , ϕp are the parameters determined by the model
and εt is white noise.

This is a model that establishes a relationship between current data of the time
series with the lagged time series.

An ARMA(p, q) model (Autoregressive Moving-Average) is a representation of
the behaviour of a time series where the output variable depends linearly on, at
most, the previous p values and the previous q values of white noise error terms.
The model is defined as:

Xt = c + εt +
p

∑
i=1

ϕiXt−i +
q

∑
i=1

θiεt−i

where, c is a constant value, ϕ1, . . . , ϕp, θ1, . . . , θq are the parameters determined by
the model and εt is white noise.

On the other hand, the ARCH(q) model (Autoregressive Conditional Heteroscedas-
ticity) is a model that describes the behaviour of the variance of the error terms(return
residuals) of a time series denoted by εt. These terms are split into two: wt a
stochastic piece and σt a time dependent standard deviation.
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Here, we work with the previous q return terms. This is:

εt = σtwt

And the model is not over the values of the series, but over the σ2
t , following this

structure:

σ2
t = α0 +

q

∑
i=1

αiε
2
t−i

where α0 > 0 and αi ≥ 0, ∀i > 0.

This type of model can be estimated using ordinary least squares.

1.3 GARCH MODEL

A GARCH model is an ARMA model for the error variance, where GARCH stands
for ”Generalized Autoregressive Conditional Heteroskedasticity”. Here, the model
can be described as follows:

εt = σtwt

where wt ∼ N (0, 1), and:

σ2
t = c +

q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiσ
2
t−i

we refer to the model as a GARCH(p, q) model, where p is the order of the GARCH
terms σ2 and q is the order of the ARCH terms ε2.

1.4 GARCH WITH TREND

So far, we have described the models that have been worked on since the 1920s,
with the first formal appearance of AR models, and the GARCH model at 1986
with Bollerslev [4]. Now, with recent work by Guerrero et. al. [6], there was an
approach to a new model based on GARCH model, where is considered an extra
parameter, the trend.

At the Guerrero et. al. [6] work, they focus on an specific GARCH model: a
GARCH(1,1) model where it is added a linear trend. The GARCH(1,1) model with
trend can be described with the following dynamics:
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εt = σtwt wt
i.i.d∼ N (0, 1)

σ2
t = α0 + α1ε2

t−1 + βt + γσ2
t−1

where β is the coefficient that describes the relation with the trend, α1 the coeffi-
cient that describes the relation with the error returns and γ the coefficient for the
GARCH terms.

At Guerrero et. al. [6] work, one of the main reason to add the linear trend on
their model was due to political and economical scenarios that directly influenced
the behavior of the time series and let them consider the series in different time
intervals.

1.5 MOTIVATION

Going into more details with the model explained in the previous section, the
GARCH(1,1) with trend model, we want to analyze the time series where these
changes in the model parameters can be identified, more precisely, in the series
trend.

As we mentioned at the end of the previous section, Guerrero et. al. [6] focused
their work on analyzing the behavior of the GARCH(1,1) model with trend in a set
of values for the time series that were within similar political scenarios. On this
work, we want to identify when these changes occur in the series, not based solely
on political scenarios, but on changes inherent to the time series and try to find
a relationship between the change point of the time series and different external
events related to it.

To give an approach to the behavior of the model, and try to identify the changes,
we will focus on the likelihood function, which, basically, measures the goodness
of fit of a model to a sample of data for given values of the unknown parameters.
We are going to face two likelihood function: the first, that measures the goodness
of fit of the GARCH(1,1) with trend model (without break point), against the sec-
ond, a likelihood function that assumes that the we have two GARCH(1,1) with
trend models, assuming that we have n values: the first k values are described
with parameters different than the last n− k values, this is, we have a break point
at k.

Then, we introduce a log-likelihood ratio function, where we face the two likeli-
hood functions described in the previous paragraph, through a division, and we
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calculated the values of the parameters that maximize this ratio. Also, to simplify
the calculations, we work with the logarithms of these functions.

One of the advantages offered by the assumption of the existence of a break point
in the time series is, being able to identify possible relationships between external
scenarios and their impact on the time series. Imagine, for example, the prices of a
barrel of oil and the current pandemic caused by the coronavirus. Here, we could
see that once the virus began to spread worldwide and people started to work from
home, the price of oil began to fall.

We want to look further in the behaviour of the oil prices, and different exchange
rates. The main reason for choosing exchange rates is the close relationship that
exists between the economic base of certain countries and oil. Here, we will be able
to analyze and determine that many countries, in which their economy is based on
the commercialization of crude oil and oil, will undergo changes in the exchange
rates between their local currencies with the dollar.





CHAPTER 2
MODEL

2.1 MODEL

At the following chapter, we will go into more details about the methodology to
find the break point for the GARCH(1,1) with trend model. Here, we will work on
the hypothesis over the returns:

εt = µ + σtwt wt
i.i.d∼ N (0, 1)

and, we want to test the following hypotheses:

H0 :
{

µ = µ0
σ2

t = α0 + α1(εt−1 − µ0)
2 + βt + γσ2

t−1 1 ≤ t ≤ n

H1 : ∃k, s.t.


µ = µ1
σ2

t = α0 + α1(εt−1 − µ1)
2 + β1t + γσ2

t−1 f or t ≤ k

µ = µ2
σ2

t = α0 + α1(εt−1 − µ2)
2 + β2t + γσ2

t−1 f or k + 1 ≤ t ≤ n

As we can see, we have the null hypothesis, H0, establishes that the volatility of
the time series can be described with a GARCH(1,1) with trend model over all the
set of values, with fixed parameters of α0, α1, β (the trend) and γ. On the other
hand, with H1 we establish that the model splits into ”two periods”, where they
differ by the trend coefficient and the µ value for the returns hypotheses.

The previous statistical procedure could be used in the case in which a structural
change in the parameters of the process X, with the following dynamics:

Xt = X0 exp

{
µit +

t

∑
j=1

σjwj

}
i = 1, 2
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is suspected at some time k ∈ [0, t]. This is true since:

log(Xt/Xt−1) = µi + σtwt

2.2 LOG-LIKELIHOOD RADIO TEST

With the previous hypotheses H0 and H1, let’s consider the Likelihood under
those. First, under H0 we have:

L0(µ0, α0, α1, β, γ) =
n

∏
j=1

f (ε j)

=
n

∏
j=1

1√
2πσ2

j (β)
exp

{
−
(ε j − µ0)

2

2σ2
j (β)

}

alternatively, under H1 we have:

L1(µ1, µ2, α0, α1, β1, β2, γ, k) =
k

∏
j=1

1√
2πσ2

j (β1)
exp

{
−
(ε j − µ1)

2

2σ2
j (β1)

}

×
n

∏
j=k+1

1√
2πσ2

j (β2)
exp

{
−
(ε j − µ2)

2

2σ2
j (β2)

}

It follows that the Log-likelihood ratio function is given by:

λk =
L0(µ̂0, α̂00, α̂01, β̂, γ̂0)

L1(µ̂1, µ̂2, α̂10, α̂11, β̂1, β̂2, γ̂1, k)

For k ∈ {2, ..., n}.

In particular, we will use the following statistic to detect a change of drift:

Λ = max
2≤k≤n

| − 2 log(λk)|

To go further on details about Λ and λk’s, let’s take a look to the following chap-
ter where we are going to find the λk’s using Newton’s method and explain the
behaviour of the Λ approximately as a non-central ξ2

n.



CHAPTER 3
METHODOLOGY

3.1 NEWTON’S METHOD

We will again consider the definition of the λk’s and Λ introduced in Section 2.2.
In order to evaluate the statistic Λ:

1. For µ̂0, µ̂1 and µ̂2 from the λk, we have that:

µ̂0 =

(
n

∑
j=1

ε j

σ2
j

)/(
n

∑
j=1

1
σ2

j

)
, µ̂1 =

(
k

∑
j=1

ε j

σ2
j

)/(
k

∑
j=1

1
σ2

j

)
,

µ̂2 =

(
n

∑
j=k+1

ε j

σ2
j

)/(
n

∑
j=k+1

1
σ2

j

)

2. We seek a solution of the following:

α̂j0 solves
∂ log(Lj)

∂αj0
= 0, j = 0, 1

α̂j1 solves
∂ log(Lj)

∂αj1
= 0, j = 0, 1

γ̂j solves
∂ log(Lj)

∂γj
= 0, j = 0, 1

and

β̂ j solves
∂(L1)

∂β j
= 0, j = 1, 2

Let Λk = −2 log λk and consider the hypotheses H0 and H1 from the previous
chapter. As the likelihood functions are products of density functions for a normal
distribution, the products will vary from 0 to 1, so on, the likelihood function.

Then, if the null hypothesis, H0, is false (which means there is a change-point that
occurs at some time k), implies that λk takes a small value (close to zero), which
turns Λk to be a large value. As a result, we reject the null hypothesis in the case
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that the |Λk| is too large, and the k, where the largest value, Λk, is observed, should
be the time point where the change occurs.

We will estimate the parameters using standard Newton’s method and explain
why we choose the statistic Λ. In particular, we will focus on the parameter ob-
tained from L1 (for the estimation of the parameters under L0, see Section 3 in
Guerrero et. al.(2016a) [6]). By assumption, for the log likelihood we have:

log(L1) =
k

∑
j=1
−1

2

[
log(σ2

j (β1)) +
(ε j − µ1)

2

σ2
j (β1)

]

+
n

∑
j=k+1

−1
2

[
log(σ2

j (β2)) +
(ε j − µ2)

2

σ2
j (β2)

]

In turn, if ω = (α0, α1, σ, β1, β2)
>, and using the definition itself of σ2

t and the
gradient operator with the chain rule, we have then:

∂ log(L1)

∂ω
=

k

∑
j=1
−1

2

 ∂σ2
j (β1)

∂ω

σ2
j (β1)

−
(ε j − µ1)

2

(σ2
j (β1))2

∂σ2
j (β1)

∂ω


+

n

∑
j=k+1

−1
2

 ∂σ2
j (β2)

∂ω

σ2
j (β2)

−
(ε j − µ2)

2

(σ2
j (β2))2

∂σ2
j (β2)

∂ω


=

k

∑
j=1

1
2σ2

j (β1)
k j(β1)

(
(ε j − µ1)

2

σ2
j (β1)

− 1

)

+
n

∑
j=k+1

1
2σ2

j (β2)
k j(β2)

(
(ε j − µ2)

2

σ2
j (β2)

− 1

)
=: ∇L(ω),

where

k j(β1) = (1, (ε j − µ1)
2, σ2

j−1, j, 0)>

k j(β2) = (1, (ε j − µ2)
2, σ2

j−1, 0, j)>

Moreover, for the second moments we have that
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∂2L1

∂ω∂ω>
=−

k

∑
j=1

1
2σ4

j (β1)
k j(β1)k>j (β1)

(
2
(ε j − µ1)

2

σ2
j (β1)

− 1

)

−
n

∑
j=k+1

1
2σ4

j (β2)
k j(β2)k>j (β2)

(
2
(ε j − µ2)

2

σ2
j (β2)

− 1

)

From the expression above, we define

J(ω) = E

[
∂2L1

∂ω∂ω>

∣∣∣∣∣Fj−1

]
.

= −
k

∑
j=1

1
2σ4

j (β1)
k j(β1)k>j (β1)

−
n

∑
j=k+1

1
2σ4

j (β2)
k j(β2)k>j (β2)

In summary, we estimate the parameters and iterations, for the Newton’s method
as follows:

ωk+1 = ωk − J−1(ωk)∇L(ωk).

3.2 THE LOG-LIKEHOOD STATISTIC

In this section we analyze the likelihood ratio statistic described in the previous
chapter. We will show that this statistic behaves approximately as a non-central
ξ2

n. To this end, remember we set Λk as:

Λk = −2 log(λk)

We first note that, under H0, the following should hold:

σ2
j = α0 + α1σ2

j−1ω2
j−1 + βt + γσ2

j−1

σ2
j (β1) = α0 + α1σ2

j−1ω2
j−1 + β1t + γσ2

j−1(β1)
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σ2
j (β2) = α0 + α1σ2

j−1ω2
j−1 + β2t + γσ2

j−1(β1)

Now, let’s work with the statistic to see the behaviour under the H0:

Λk =
n

∑
j=1

[
log(σ2

j ) + ω2
j

]
−

k

∑
j=1

[
log(σ2

j (β1)) +
σ2

j ω2
j

σ2
j (β1)

]

−
n

∑
j=k+1

[
log(σ2

j (β2)) +
σ2

j ω2
j

σ2
j (β2)

]

In turn, rearranging terms, we have that:

Λk =
k

∑
j=1

[
log

(
σ2

j

σ2
j (β1)

)
+

(
ω2

j −
σ2

j ω2
j

σ2
j (β1)

)]

+
n

∑
j=k+1

[
log

(
σ2

j

σ2
j (β2)

)
+

(
ω2

j −
σ2

j ω2
j

σ2
j (β2)

)]

Then, factoring:

Λk =
k

∑
j=1

[
log

(
σ2

j

σ2
j (β1)

)
+ ω2

j

(
1−

σ2
j

σ2
j (β1)

)]

+
n

∑
j=k+1

[
log

(
σ2

j

σ2
j (β2)

)
+ ω2

j

(
1−

σ2
j

σ2
j (β2)

)]

Furthermore, given a first order Taylor approximation of the log function, it yields

Λk =
k

∑
j=1

[
−1

(
1−

σ2
j

σ2
j (β1)

)
+ ω2

j

(
1−

σ2
j

σ2
j (β1)

)]

+
n

∑
j=k+1

[
−1

(
1−

σ2
j

σ2
j (β2)

)
+ ω2

j

(
1−

σ2
j

σ2
j (β2)

)]



3.2 THE LOG-LIKEHOOD STATISTIC 13

Then

Λk =
n

∑
j=1

1−
σ2

j

σ̂2
j

 (ω2
j − 1)

where

σ̂2
j =

{
σ2

j (β1) f or j ≤ k
σ2

j (β2) f or k + 1 ≤ j ≤ n

Hence, as Λ = max(Λk), it follows, that in law:

Λ ≈ χ2
n − n

That is, Λ behaves approximately as a non-central χ2
n. Thus:

E
[
χ2

n − n
]
= 0 and Var

[
χ2

n − n
]
= 2 · n.





CHAPTER 4
DATA

4.1 THE OIL PRICES AND EXCHANGE RATES RELATION-

SHIP

Based on previous research, it has been possible to establish a close relationship
between real oil prices and real exchange rates(”real” values are computed by di-
viding the the nominal value by the ratio of the Consumer Price Index (CPI)) in
countries that have oil as an export product, such as Brazil, Canada, Mexico, Nor-
way and Russia; in addition to a country that imports it, which is Peru. Even more,
Amano and Norden (1998)[3] showed that oil price shocks impact US real effective
exchange rates, and not the converse. This can be translated in the fact that oil
price fluctuations play a major role explaining real exchange rate behaviour. In
fact, they found that oil prices have a high forecasting power on US real effec-
tive exchange rate. Rautava (2004)[10] studied the same relationship for an oil-
producer economy, Russia. He shows how oil price fluctuations influence the Rus-
sian ruble through the long-run equilibrium conditions and the short-run direct
impacts.

Akram (2004)[1] found a strong nonlinear negative relationship between the value
of the Norwegian krone and crude oil prices. He demonstrates that the incorpo-
ration of non-linearities can substantially improve the forecasting performance of
structural exchange rate models. More specifically, variations in oil prices have
important effects on exchange rates whenever oil prices are particularly low. In
fact when oil prices are falling the effect is even higher.

Reboredo (2012)[11] analyzes the dependence structure of the co-movement be-
tween crude oil prices and exchange rates from 2000 to 2010 for seven countries.
He uses correlations and copulas with the idea of capturing better the tail depen-
dence. So, increments in oil prices come together with depreciation and vice versa.
The intensity of this co-movement differs across currencies, oil-exporting coun-
tries like Canada, Norway and Mexico record more intense co-movement, while
oil-importing countries show between null or weak relationship. In particular, the
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author shows the existence of tail independence between oil prices and exchange
rates in the periods before and after the financial crisis.

This is going to be really important; we can take this as a step towards studying the
behavior of its most recent price series. Recall that in the course of 2020, oil prices
have had a rather unusual behavior given the current context of a global pandemic
(Coronavirus disease, COVID-19), which has led many analysts and investors to
rethink strategies to take advantage of these assets. Without going too far, Ferraro
et al. (2015)[5] show the short-run relationship between variations of oil prices and
variations of the nominal exchange rate for countries like Canada and Norway. For
these countries, Ferraro et al. (2015)[5] use daily observations and show that oil
prices do forecast nominal exchange rates. In particular, the daily oil price model
outperforms the monthly and quarterly oil price models. They conclude that the
better predictive power of the model is due to the frequency instead of the length
of the series. Finally, Jiranyakul (2015)[7] shows that oil price volatility causes real
exchange rate volatility in Thailand.

Our research uses the widely documented relationship oil prices and exchange
rates and extend some findings on volatility. Our research is related to Ferraro et
al. (2015)[5] in the sense that we analyze the nominal exchange rate and use real-
time data. However, we focus on the volatility of the series and in particular we
detect changes of drifts in the volatility. We answer the question whether a change
of drift in volatility of the oil prices can precede a change of drift in volatility of
exchange rates for 6 oil-exporting countries and 1 oil-importing country just to
contrast the results. In turn, this results may inform policy and eventually support
the the design of preventive strategies.

4.2 DATA AND DESCRIPTION

Our research includes empirical tests for the change of drift in the volatility of oil
prices and exchange rates for 5 oil-exporting countries (Brazil, Canada, Mexico,
Norway and Russia) and 1 oil-importing country, Peru. For the analysis, we use
daily observations ranging from October 1st, 2019 to October 1st, 2020 of the spot
price for the Brent and WTI crude oils. We recall that the WTI is usually used as the
benchmark in USA and as the underlying commodity of the NYSE for oil futures
contracts. All series with exception of WTI were obtained from Alpha Vantage
databases [2]. WTI info came from Quandl database [9].

In addition, we will see if there was any impact that these changes had on the
volatility of the WTI with the indexes that represent the great markets of the world,
such as the S&P 500 (USA), S&P / BMV IPC (Mexico) and S&P China A 300 by the
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same period. All of their information, came from Yahoo Finance [12].

Since oil and exchange rates co-move in small open economies, as long as oil price
shocks are within a given range, central banks concerned with price stability may
resist exchange rate fluctuations by adjusting interest rates. However, shocks out-
side of the range may lead to high or low interest rates, which could destabilise the
economy by reducing external competitiveness and weaken their financial system.
In such cases, gains from allowing the exchange rate to fluctuate may exceed those
of keeping it stable. Thus, when low oil prices are a source of economic fluctu-
ations, monetary authorities may abandon their commitment to avoid exchange
rate depreciation allowing the exchange rate to fluctuate.

Most of the studied countries, with exception of Peru, are oil-exporting and small
open economies whose relative small share in the global oil market allows the
assumption of price-taker countries. For instance, Crude oil was the world’s top
export product in 2018, with Russia, Canada and USA as the top 10 exporters.
Further statistics regarding these countries can be found at Chapter 6.

Figure 4.1 suggests the existence of a negative correlation between WTI oil prices
and exchange rates for all countries. However, the intensity of the relationship
appears to differ across countries. For the advanced oil-exporting countries Nor-
way and Canada, analyzed in this work, the relationship appears to be stronger
for extreme values and weaker in intermediate values. In turn, for emerging and
oil-exporting countries like Mexico, Brazil and Russia the relationship appears to
be strong even for intermediate values of oil price and exchange rates, especially
for Mexico. In contrast, for the Peruvian sol the relationship appears to be weaker.
Also, we can see an outlier of a negative price of WTI, as it seems to be the only
value that don´t have any relation with the behaviour of the WTI prices.

However, we can see the relationships figure 4.2, between the oil prices and top
Market indexes that represents the ”real status” of the market regarding their coun-
try; we can see that the S&P / BMV IPC of Mexico has a strong relationship with
the crude oil prices, also positive and in the other side, the S&P 500 of USA and
A300, the equivalent of the index for China, appears to have weaker relationships
but the S&P 500 index seems to have a positive correlation.
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Figure 4.1: Scatterplot WTI vs. Currencies

Figure 4.2: WTI vs. Market Indexes



CHAPTER 5
TEST RESULT AND ANALYSIS

5.1 MODEL TESTING

Since we were able to see a relationship between exchange rates and oil prices, we
are going to evaluate each time series and determine the influence between the
change in drift in oil volatility and the change in drift in volatility in oil prices.
series. Recall that we also add an analysis on the most important market in-
dices.

In table 6.1 we present the dates on which the greatest change detected occurred in
the period from 2019/10 to 2020/09. Then, in columns 3 to 5, we have the p-values
of the Breusch Pagan homogeneity test for the different trend-GARCH, GARCH
(1,1) and ARCH (1) models. In columns 6 and 7, we have the estimate of the trend
in the model before and after the change in the drift in volatility. Columns 8 and
9, characterize the trend of the process before and after the change in the drift in
volatility.

Table 5.1: Statistical results

Breusch-Pagan (P-Value) Volatility drift (coef.) Drift (coef.)
Change T-GARCH GARCH ARCH Drift Vol. B. Drift Vol. A. Drift B. Drift A.

WTI 24/06/2020 0.90 0.11 0.18 4.09e-06 5.99e-07 0.10 0.14
Mexico 17/02/2020 0.34 0.43 < 0.001 -4.16e-08 8.20e-08 -0.12 0.10
Brazil 21/02/2020 0.54 0.01 < 0.001 -2.56e-07 5.94e-07 -0.03 0.08

Canada 25/02/2020 0.09 0.11 0.007 -1.03e-07 1.49e-07 0.10 0.11
Norway 16/01/2020 0.44 0.70 < 0.001 -5.55e-08 4.75e-08 -0.02 0.08

Peru 22/02/2020 0.74 0.22 0.12 -1.94e-08 -1.72e-09 -0.55 0.46
Russia 25/12/2019 0.83 0.04 0.04 -1.22e-08 4.79e-08 -0.18 0.06

SPY 19/02/2020 0.16 0.08 0.02 8.02e-08 2.88e-07 0.11 -0.09
MXX 08/06/2020 0.35 0.44 0.25 1.7e-06 2.61e-07 0.05 0.07
A300 29/06/2020 0.02 0.01 0.03 5.77e-07 1.09e-06 -0.04 0.27
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5.2 INSIGHTS

According to this, p-values for the ARCH model show that the homoscedasticity
can be rejected for almost all the countries and indexes, we can’t reject the hypoth-
esis for WTI, Peru and Market Index of Mexico. On the other side, for the GARCH
model, it fails in three of the ten series (2 exchange rate series Brazil, Russia and
the A300 of China).

In contrast, the Breusch-Pagan p-values for the trend-GARCH, show that the null
hypothesis of homoscedasticity can not be rejected, except with A300 of China.
Therefore, the trend-GARCH model mostly does outperform the ARCH and GARCH
model, since it is able to detect the change of drift and is more accurate in capturing
existing changes in the pattern of volatility.

We first analyze the case of the WTI crude oil prices in Figure 1 at Appendix A.
For the WTI prices, the standardized residuals of the ARCH(1), GARCH(1,1) and
Trend-GARCH models are homoscedastic. And, for the WTI oil price, our test
detects a major peak on 24/06/2020.

Trend is positive and significant before and after the first change point (24/06/2020),
it only slightly decrease. The standardized residuals with the trend-GARCH with
change point are homoscedastic with p-value=0.903.

For the Mexican Peso/USD, the standardized residuals resulting of the Trend-
GARCH with change point and GARCH(1,1) are homoscedastic, while for the
standardized residuals of the ARCH(1) fail the Breusch-Pagan test. Changes on
the drift of volatility are detected on 17/02/2020, where the drift goes from neg-
ative and significant to positive and significant. Also, some of the local peaks
that have WTI, matches with the exchange rate, for example, at 15/01/2020 and
17/02/2020.

For the Brazilian Real/USD, the standardized residuals resulting of the Trend-
GARCH with change point are homoscedastic, while for the standardized resid-
uals of the ARCH(1) and GARCH(1,1) fail the Breusch-Pagan test. Changes on the
drift of volatility are detected on 21/02/2020, where the drift goes from negative
and significant to positive and significant. Here, the peak occurs 3 days after a
local peak of WTI at 18/02/2020.

For the Canadian Dollar/USD, the standardized residuals resulting of the Trend-
GARCH with change point and GARCH(1,1) are homoscedastic, while for the
standardized residuals of the ARCH(1) fail the Breusch-Pagan test. Changes on
the drift of volatility are detected on 25/02/2020, where the drift goes from nega-
tive and significant to positive and significant. Here, the peak occurs at almost a
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week after a local peak of WTI at 18/02/2020.

For the Norwegian Krone/USD, the standardized residuals resulting of the Trend-
GARCH with change point and GARCH(1,1) are homoscedastic, while for the
standardized residuals of the ARCH(1) fail the Breusch-Pagan test. Changes on
the drift of volatility are detected on 16/02/2020, where the drift goes from nega-
tive and significant to positive and significant.

For the Peruvian Sol/USD, the standardized residuals resulting of the Trend-GARCH
with change point, ARCH(1) and GARCH(1,1) are homoscedastic. Changes on the
drift of volatility are detected on 22/02/2020, where the drift goes from negative
and significant to positive and significant. Here, the peak occurs 3 days after a
local peak of WTI at 18/02/2020.

For the Russian Ruble/USD, the standardized residuals resulting of the Trend-
GARCH with change point are homoscedastic, while for the standardized residu-
als of the ARCH(1) and GARCH(1,1) fail the Breusch-Pagan test. Changes on the
drift of volatility are detected on 25/12/2019, where the drift goes from negative
and significant to positive and significant. Here, the peak matches with a local
peak that occur with Mexican Peso/USD at 25/12/2019.

On the other side, going with the indexes market, we can see that, for the SPY
index, the standardized residuals resulting of the Trend-GARCH and GARCH(1,1)
with change point are homoscedastic, while for the standardized residuals of the
ARCH(1) fail the Breusch-Pagan test. Trend is positive and significant before and
after the first change point (19/02/2020), it only increase.

For the MXX index, the standardized residuals resulting of the Trend-GARCH with
change point, ARCH(1) and GARCH(1,1) are homoscedastic. Trend is positive and
significant before and after the first change point (08/06/2020), it only decrease.
Here, the peak occurs at just three days away a local peak of SPY that occurs at
11/06/2020.

For the A300 index, none of the test tell us that the homoscedasticity hypothesis
can’t be rejected. Here, the peak occurs at just two weeks after a local peak of SPY
that occurs at 11/06/2020.

Also, we can observe that the trend-GARCH fits better the data in almost all the
cases since it adequately captures changes in trend volatility in comparison to the
ARCH(1) and the GARCH (1,1) models.





CHAPTER 6
CONCLUSIONS AND EXPECTATIONS

6.1 CONCLUSIONS

After having evaluated our daily frequency time series, and having analyzed the
(negative) relationship between oil prices and different exchange rates, our empir-
ical results may suggest that a drift change in the volatility of oil prices precedes
the drift change in the volatility of exchange rates given sudden changes in small
intervals. To achieve our goal, we developed a statistical log probability ratio that
detects drift changes in the Trend-GARCH model. We statistically quantify the ef-
fect of changes in the volatility of oil with changes in the volatility of currencies
and we obtain a close relationship between the dates detected for exchange rates,
with the dates detected for oil prices.

We also see that, although the maximum breaking point of oil is after the dates
detected in the exchange rates, for the most part, their points of changes are very
close to each other.

In addition to this, from the market indicators, which in fact have a (positive) re-
lationship with the oil price, we can see that the changes in the volatility of the
market indicators are affected in a similar way, since they share dates very close in
which breaking points are registered (local and global). In this case, the relation of
the market indicators don’t seem to have hints of relation between the changes of
drift in the volatility, expect with the SPY index.

6.2 EXPECTATIONS

Given that our code demands to be able to calculate inverse of matrices for New-
ton’s method iterations, this step threw some errors at the moment of the matrix
inversion, i.e. singular matrices, which we believe is due to declaring initial values
for the model parameters very far from the real / ideal of each break point.

We hope to obtain better results in the future if we implement a better selection
of the initial values and minimize the possibility of errors in the calculation of
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the inverse matrix. Following the work done by Uribe et al.(2017) [8], were they
proposed an ”Hybrid Metaheuristic” process to get better initial values in the pa-
rameters of the GARCH with trend model and be used in future works.

Since there are numerous variations of the GARCH models, which add other types
of variables such as seasonality or rethink the model with other objects, for exam-
ple, correlation matrices, we can find models that can be very useful. These models
could even better describe the behavior of volatility in our time series and give us
better statistics to find the break points.

This is mentioned, since the GARCH (1,1) model with a tendency proposed by
Guerrero et. al [6] has not been worked on in other investigations, since these
studies only mention the tendency to compare behaviors of the series in an infor-
mal way, but they do not use it as a variable within the model.
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APPENDIX A
RATES AND WTI PLOTS

It’s important to see that we have some discontinuity over the graphs, the main
reason for this, is due to the calculation of the inverse of a matrix related to specific
prices/values over the dates that get us a singular matrix. On those cases, we
simply omit the value for the test.

Fig. 1: Left: Test on WTI to detect the change point.
Right: Roots of the square of the volatility modelled by

trend-GARCH model in red, volatility in blue.
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Fig. 2: Left: Test on Currencies to detect the change points.
Right: Roots of the square of the volatilities modelled by

trend-GARCH model in red, volatilities in blue.
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Fig. 3: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on WTI

Fig. 4: Log-likelihood ratio statistic for WTI
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Fig. 5: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on MXN/USD

Fig. 6: Log-likelihood ratio statistic for MXN/USD
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Fig. 7: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on BRL/USD

Fig. 8: Log-likelihood ratio statistic for BRL/USD
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Fig. 9: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on CAD/USD

Fig. 10: Log-likelihood ratio statistic for CAD/USD
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Fig. 11: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on NOK/USD

Fig. 12: Log-likelihood ratio statistic for NOK/USD
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Fig. 13: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on PEN/USD

Fig. 14: Log-likelihood ratio statistic for PEN/USD
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Fig. 15: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on RUB/USD

Fig. 16: Log-likelihood ratio statistic for RUB/USD
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APPENDIX B
MARKET INDEXES TESTS

Fig. 17: Left: Test on Market Indexes to detect the change points.
Right: Roots of the square of the volatilities modelled by

trend-GARCH model in red, volatilities in blue.
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Fig. 18: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on SPY index

Fig. 19: Log-likelihood ratio statistic for SPY index
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Fig. 20: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on MXX index

Fig. 21: Log-likelihood ratio statistic for MXX index
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Fig. 22: Res. de Y mod AR(p), Garch with trend,
ARCH(1) and GARCH(1,1) models on A300 index

Fig. 23: Log-likelihood ratio statistic for A300 index




