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In this talk, we introduce a coordinate system for each Maximal abelian subgroup
(MASG) in the D (unit ball or Siegel Domain), these system are given by (h, g) ∈ H(D)×G
which depend of the action of the MASG G and h the Moment map associated to the
MASG. Using the systems of coordinates associated to Quasi-Elliptic and Quasi-Hiperbollic
MASG, we introduce an isometric isomorphism

R : L2(R)⊗ L2(Bn−1, dµλ)→ L2(Dn, dµλ).

such that

R(L2(R)⊗A2
λ(Bn−1)) = A2

λ(Dn),

where A2
λ(Bn−1) and A2

λ(Dn) denote the Bergman space on the ball and Siegel domain.
Furthermore

R
(
I ⊗BBn−1,λ

)
R∗ = BDn,λ : L2(Dn, dµλ) −→ A2

λ(Dn),

R∗BDn,λR = I ⊗BBn−1,λ : L2(R)⊗ L2(Bn−1, dµλ) −→ L2(R)⊗A2
λ(Bn−1),

where BBn−1,λ is the Bergman projection from L2(Bn−1, dµλ) onto A2
λ(Bn−1) and BDn,λ

is the Bergman projection from L2(Dn, dµλ) onto A2
λ(Dn).

Here we consider four types of symbols invariant under dilations (r0 · z = (r
1
2
0 z
′, r0zn).

where r0 ∈ R+. )

a = a(hn) ∈ L∞(R)(1)

a = a

(
2hn

1 + ‖h′‖

)
∈ L∞(R)(2)

b = b(t′, h′) ∈ L∞(Tn−1 × Rn−1+ )
⋂
L∞(Dn)

T.(3)

c = c(t′, h) ∈ L∞(Tn−1 × Rn+ × R)
⋂
L∞(Dn)

T.(4)

where h = (h′, hn) ∈ Rn−1+ × R and
⋂
L∞(Dn)

T are function invariant under the action
t0 · (z′, zn) = (t0z

′, zn).
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We obtain the the Toeplitz operators for each of the above symbols are unitary equivalent
to the following

R∗ TaR =
⊕
k∈Z+

∫ ⊕
R
Tâ[k,ξ] |Hk

dξ(5)

R∗ TaR =
⊕
k∈Z+

γa(k, ξ)I(6)

R∗ TcR =
⊕
k∈Z+

∫ ⊕
R
Tĉ[k,ξ] |Hk

dξ(7)

R∗ TbR =
⊕
k∈Z+

∫ ⊕
R
Tb |Hk

dξ =

∫ ⊕
R
Tbdξ,(8)

acting on

L2(R)⊗A2
λ(Bn−1) =

⊕
k∈Z+

(L2(R)⊗Hk) =
⊕
k∈Z+

(∫ ⊕
R
Hkdξ

)
.

Finally, we obtain some commutative properties between the above operators, for ex-
ample: Consider the symbols a, and b and c of the form (??), (??) and (??) respectively.
Then TaTc = TcTa. and Tab = TaTb = TbTa.


