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Consider the Gaussian measure µ given by dµ = 1
π
e−|z|2 dz. Then the standard (ana-

lytic) Fock space F2 consists of functions f ∈ L2(C, µ) that satisfy ∂f
∂z̄

= 0. If we replace
the ∂̄-operator by ∂̄n, we obtain the polyanalytic Fock space F2

n, that is,

F2
n := {f ∈ L2(C, µ) : ∂nf

(∂z̄)n
= 0}.

The so-called true polyanalytic Fock spaces are then constructed as follows:

F2
(1) := F2, F2

(n) := F2
n ⊖F2

n−1, n ≥ 2.

In this talk I will explain how limit operator methods [2] can be used to characterize the
set of compact operators on F2

(n). In fact, with the help of the decomposition

L2(C, µ) =
∞⊕
n=1

F(n),

we will obtain a characterization of compact operators on L2(C, µ). A straightforward
argument then shows that a Hankel operator with bounded symbol f ,

Hf,(n) : F2
(n) → L2(C, µ),

is compact if and only if f has vanishing mean oscillation. In particular, this means that
the compactness of Hf,(n) is independent of n. Interestingly, the same cannot be said
about Toeplitz operators

Tf,(n) : F2
(n) → F2

(n).

This talk is an extended version of my presentation at IWOTA 2022 in Krakow, and
based on the paper [1].
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